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Generalized fracture mechanics 

Part 3 Prediction of fracture energies in highly extensible solids 

E. H. ANDREWS, Y. FUKAHORI  
Department of Materials, Queen Mary College, London, UK 

According to Andrews' generalized fracture mechanics theory [1], the fracture energy of a 
solid is given by 

7= 7or 
where  7o is a surface  energy and (b a loss func t ion  whose  fo rm is explicit .  Th e  loss 
func t ion  has been evaluated expe r imen ta l l y  for  fou r  highly extensible  materials,  s t y r e n e -  
bu tad iene  rubber,  e t h y l e n e - p r o p y l e n e  rubber ,  plasticized PVC and p o l y e t h y l e n e  and at  
various rates of  crack propagat ion .  T h e  q u a n t i t y  7o has also been calculated f rom 
exist ing t h e o r y  and a p red ic t ion  thus  ob ta ined  for  f rac tu re  energy.  Th e  results indicate 
good agreement  be tween  e x p e r i m e n t  and t h e o r y  and thus  appear  to  c o r r o b o r a t e  the  
general ized fo rmu la t i on  of  f r ac tu re  mechanics  in its appl ica t ion to  non-l inear  inelastic 
materials.  

1 I n t r o d u c t i o n  

Previous papers in this series have dealt respective- 
ly with the basic generalized theory [1] and its 
application to the fracture of ductile metal alloys 
[2]. The investigation reported here provides a 
critical test of one of the most important pre- 
dictions of the theory, namely that the fracture 
energy 7 of a solid (referred to unit area of crack 
interface) is given by 

7 = 7o~(C, T, Co) (1) 

where 7o is the energy to rupture unit area of 
inter-atomic bonds across the fracture plane (the 
'surface energy' of the solid on one definition) 
and q~ is a loss function dependent on the crack 
velocity ~, the temperature T and the applied 
strain Co. Specifically, from consideration of an 
edge crack in a semi-infinite sheet, 

cb = kl(eo ka(eo) --�89 ~ (396x 6y (2) 
PU 

where kl(eo) = �89 ~ q g S x  6y*, (3) 
P 

3x , (4) 

f(x, y, eo) = w(P)/Wo. (s) 

W(P) is the input energy density at a point P in 
the stress field, W0 is the input energy density at 
points remote from the crack, x, y are the re- 
duced cartesian co-ordinates of the point P 
(x =X/c;  y = Y/c), c is the crack length, fJ(x,y) 
is the hysteresis ratio at the point P, and the 
symbols P, PU denote summation over all points 
in the stress field, and over points which unload as 
the crack propagates, respectively, q is a negative 
constant of value --1 for linear materials [2]. 

If the energy density distribution around a 
crack is known, the function g, and thence kl,  

*The factor ~- appears instead of �88 as in [1 ] because we refer here to an edge crack in a semi-infinite sheet in which 
summations are taken only over the semi-haFmite half-plane rather than the full plane considered in [ 1 ]. 
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can be evaluated. Alternatively kl can be obtained 
directly by the compliance method described in 
[2]. The evaluation of the term ~ requires 
additionally a knowledge of the hysteresis ratio/3 
from point to point in the stress field and/3 will 
in general be a function of the local strain, strain 
rate and temperature. Indeed,/3 will also in general 
depend on the amount of crack growth, zSc, 
since the fractional energy loss at P will depend on 
the degree of relaxation permitted to occur there 
(This effect gives rise to the phenomenon of 
fatigue). However, for steady state tearing (con- 
stant crack speed) as observed in the work here 
reported it is appropriate to use the hysteresis 
ratio for a full loading/unloading stress cycle at 
the appropriate strain rate and peak strain for/3. 
We have not attempted, at this stage, to measure 
/3 for our materials in biaxial strain as is strictly 
necessary to characterize losses in the strain field 
around a crack. We have assumed that /3 is a 
unique function of input energy density (at a 
given strain rate) regardless of the strain tensor 
giving rise to this density and have then employed 
values of/3 derived from uniaxial tests. 

To complete the theoretical evaluation of 
~" from Equation 1 requires a knowledge of 
~'o. This parameter may be measured by fatigue 
experiments in which ~'o is the threshokt energy 
release rate below which no growth of a crack 
occurs (except by chemical attack), and such 
measurements for one of our materials (SBR) are 
to be found in the literature [3, 4] .  These measure- 
ments are difficult, however, and do not always 
succeed. An alternative approach is to caluclate 
~'o by the method of Lake and Thomas [5] which 
is applicable to cross-linked elastomers. Calculated 
values for ~'o are typically smaller than measured 
values by a factor of 2 or even more. In the 
present work ~o has been calculated for all four 
materials used using a modified form of the theory 
in the ease of non-cross4inked materials. 

To summarize, therefore, the following 
measurements and calculations have been carried 
out in order to test the validity of Equation 1: 
(a) Direct measurement of  fracture energy ~. 
(b) Evaluation of  kl(eo) by the compliance meth- 

od. 
(c) Experimental determination of strain, and 

thence energy, distributions around cracks and 
the evaluation of the function g. 

(d) Experimental determination of/~(e, ~). 
(e) Calculation of ~l'o. 
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(f) From (b) - (e), the calculation of a theoretical 
value for ~ from Equation 1 to compare with 
the experimental value. 
The work was carried out on four different 

materials; styrene-butadiene rubber (SBR), 
ethylene-propylene-diene rubber (EPDM), plasti- 
cized PVC and low density polyethylene (details 
are given in the appendix). Only the first two 
materials are chemically cross-linked elastomers 
but the last two also exhibit rubberlike defor- 
mations by virtue of physical "cross4inks" e.g. the 
crystalline regions in polyethylene. 

All tests were carried out at 23 ~ C but to obtain 
variations of ~', three different crack velocities 
were used for each material. Since local strain rates 
are controlled by the crack velocity,/3 and thus q5 
are also sensitive to this variation. 

2 Experimental investigations 
2.1. Specimens 
The two types of specimen used were cut from 
2 mm thick compression moulded sheets of the 
materials. The first specimen was a normal tensile 
dumb-bell with a 6 mm wide gauge length for the 
determination of stress-strain and hysteresis data, 
and the second a parallel sided strip containing an 
edge crack positioned centrally to the specimen. 
These strips were 8 cm • 1 cm and the usual crack 
length c was 1 ram. 

To facilitate strain distribution measurements, 
a grid was printed on to edge-crack specimens 
covering a region of  about 1 cm ~ around the 1 mm 
crack. This was done by evaporating aluminium 
through a metal grid with 50 lines cm -1. 

2.2. De te rmina t ion  o f  k/(Co) 
The function kl(eo) was evaluated by the com- 
pliance method which is fully described elsewhere 
[2]. Parallel sided strips of the material in ques- 
tion, containing edge cracks of  different lengths, 
were deformed in tension and their load-  
deflection curves recorded. The increase of com- 
pliance with crack length was converted into an 
apparent stored-energy change --d~/dc and the 
value of kl derived from the relation [1 ] ,  

da  I = kl(eo)cWo 
2hdc leo 

where h is the sheet thickness. Note that constant 
eo implies constant load conditions since eo is the 
strain-at-infinity not the mean strain of the speci- 
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Figure 1 The function k I (Wo) for the four materials at 23 ~ C; (a) for SBR and EPDM (b) for PE and p-PVC. 

men. Also, since eo and Wo are uniquely related 
for a given material under fixed conditions of 
strain rate and temperature, it is possible and con- 
venient to display kl as a function of Wo, kl (Wo), 
rather than eo. Results for kl(Wo) are shown in 
Fig. 1 for the four materials studied. 

2.3. Measurement of crack velocity 
To obtain accurate crack velocity data, referred to 
the unstrained state, the following procedure was 
adopted. Edge crack specimens were extended in 
an Instron testing machine to an overall extension 
ratio ao in a time t l ,  held at ao for the time t2 
and returned to zero strain in time ta. The total 
crack growth Ac during this cycle was then 
measured off  the fracture surface. Keeping ao, tl 

and G constant, cycles were performed with 
varying G, and the crack velocity 6 at entension 
ratio ao obtained as the slope of a plot of Ac 
against G. This somewhat elaborate procedure is 
advisable because of  the distortion of linear 
distances in the crack tip vicinity when the speci- 
men is under strain. 

The procedure was repeated for various values 
of  OLo for each material, keeping c ~ - - l m m  
throughout. Typical results are shown in Fig. 2a 
for SBR and EPDM, and in Fig. 2b for PE and 
p-PVC. 

2.4. Measurement of hysteresis ratio/3 
Stress-strain reversal loops were obtained in the 
positive strain and stress quadrant using dumb-bell 
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Figure 3 Typical hysteresis loops 
at 23 ~ C; (a) for SBR and EPDM 
(b) for PE and p-PVC. 
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specimens and the Instron testing machine. The 
strain axis of the Instron chart was calibrated using 
bench marks in the gauge length in the normal way 
for highly extensible materials. Stress-strain loops 
of the form shown in Fig. 3 were obtained using a 
new specimen for each new strain level. The work 
was repeated for various straining rates and for all 
materials. 

The input energy density W is given by the area 
under the loading curve up to a particular strain e, 
and the recoverable energy density Wr by the 
corresponding area under the unloading curve. The 
hysteresis ratio is then given by 

~(e, ~) = ( w -  W~)/w (6) 

Data for/3 are shown in Fig. 4 and as expected, t3 
increases rapidly with strain and tends to increase 
with strain rate, though different materials behave 
differently with respect to the latter variable. The 
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magnitude of /3 also varies greatly between 
materials, ranging from less than 20% for SBR to 
up to 90% for the less elastic solids. 

2.5. Measurement of strain d is t r ibu t ion  
Crack propagation at known ? was established by 
extending edge-crack specimens to a given ao. 
The distorted grid around the (slowly) propagating 
crack was photographed for comparison with an 
earlier photograph of the unstrained specimen (see 
Fig. 5). Using the undeformed grid as a reference, 
the local extension ratios (a=, old) along the X and 
Y axes of the grid were readily obtained and 
plotted as functions of the undistorted co- 
ordinates X, Y. 

This defines the strain field, but since the 
principal axes of strain do not, in general, coincide 
with the X, Y grid lines [6], (O~x, ay) are not 
principal strains and cannot be used directly to 
obtain the input energy density W at a point. 
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Figure 4 Data for hysteresis ratio/3 at 
23 ~ C: (a) SBR (b) EPDM (c) Poly- 
ethylene and Plasticized PVC. 

To obtain the principal strains at a point 
required the following procedure. The distorted 
shape of OA'B'C' of a selected grid square was 
redrawn and compared with a standard grid square 
OABC (see Fig. 6) at the correct orientation. The 
sides AB, BC of the undistorted grid were each 
divided into ten divisions by marks at (al,  a2 . . .  
a9)  and (bl ,  b2 �9 . .  b 9 ) .  Similar divisions 
(a'x,a; . . . a ; )  and (b 'x,b;  . . . b ~ )  were made 
along the sides of the distorted grid. A pair of 
mutually perpendicular lines (Obn, Ca,) in the 
undistorted grid become (Ob', C'a') in the dis- 

torted grid. If the latter pair of lines remain per- 
pendicular in spite of distortion, they are principal 
axes of strain and the principal extension ratios aa 
and a2 are (Obn/Obn) and ' ' (Ca,/Ca,) respectively, 
assuming of course that the grid is sufficiently 
fine. Such pairs of lines are readily obtained by 
inspection and allow the construction of a map of 
principal strain directions (Fig. 7). Note that for 
highly deformable materials a line of principal 
strain is not a line which suffers no rotation during 
deformation as is the case for infinitesimal strain 
fields. 
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Figure 5 Strain field around propagating 
crack revealed by distorted grid. 
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Figure 6 Derivation of principal strain ratios from 
distorted X -- Y grid. 
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2.6. Energy density distribution 
The distribution of input energy density with 
respect to X, Y can be obtained from the strain 
distribution to a sufficient approximation for 
cross-linked elastomers and moderate strains by 
use of the theory of rubbertike elasticity which 
gives [7] 

w = C1[~ + ~  + (~1~2) -2 - 3 1  (7) 

assuming deformation at constant volume. This 
formula probably underestimates W by some 6% 
relative to the Mooney-Rivlin function involving 
two constants CI and C2, but this error is offset 
by later approximations. The parameter 6"1 is 
obtained from Equation 7 using simple extension 
data for which ~2 = a[ 1/2. This data is given in 
Fig. 8 for SBR which shows a good linear fit in 
accordance with Equation 7. 

For PVC and polyethylene, which cannot be 
expected to obey rubberlike elasticity theory, a 

b ' ~ 10"3(m) 

Figure 7 Typical map of principal strain directions, (a) for 
SBR at so = 1.56 (b) PE at s o = 1.26. 

rather different approach was necessary. For these 
materials stress-strain curves were obtained in 
shmple extension and in pure shear (~2 = 1) the 
latter case being approximated by a sheet speci- 
men held between long parallel grips whose 
initial separation was very much smaller than their 
length. Fig. 9 shows input energy density for the 
two modes of deformation for PE and PVC. Each 
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Figure 8 Derivation o f  C~ for SBR at 23 ~ C. 

point on the simple extension curve represents a 
different 0~2 value which is related to el and the 
effective Poisson's ratio. A family of curves for 
fixed a2 other than unity can then be generated 
by using the appropriate point on the simple- 
extension curve and the appropriate (positive or 
negative) intercept on the If axis for a1 = 1 
inferred from the pure shear curve, and assuming 
that the family of curves generated by different 
constant a2 values have the same shapes as that 
for a2 = 1. The broken lines in Fig. 9 show these 
constructions. Since the states of strain en- 
countered around the crack are almost everywhere 
intermediate between simple extension and pure 
shear, and since W(al) differs by only 20% 
between the two states of strain, this somewhat 
crude construction probably gives If(al, a2)to an 
accuracy of a few percent. 

Finally, therefore, it is possible to specify the 
input energy density W throughout the measured 
strain field and maps showing iso-energy contours 
are given in Fig. 10, by way of example, for SBR 
at a2 = 1.56 and PE at ao = 1.26. This diagram 
also identifies the loci of maximum input energy 

density (broken lines) which in turn divide the 
strain field into regions which unload as the crack 
propagates (i.e. regions between the loci and the 
crack) and regions where If increases with 
propagation. The energy density distribution is 
always mapped on the unstrained co-ordinates, 
since only in this co-ordinate system is the sheet 
thickness constant with respect to X, Y. 

2.7. The dis t r ibut ion of strain rate and fl 
The linear strain rate at a point is assumed to be 
given by 

de(P) de(P) dY 
. . . .  ( s )  

dt  d Y  d t  

(de(P) t 
e(P) = - - \  d Y ] b  (9) 

where e is the major principal strain. Thus the 
strain rate at all points in the strain field can be 
obtained from the strain distribution and the 
crack velocity. Given file input energy density 
W and the strain rate at a point, a value of/3 may 
then be assigned to that point. 

Figure 9 Inpu t  energy densi ty  as a 
func t ion  o f  ~ t ,  62 ; (a) Polye thylene  (b) 
plasticized PVC. 
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3. Calculation of 

Allowing 8x, 6y -+ 0, we have from Equations 2 - 5  

'X gaxSy = 
Pu  

1 ( g I ' U  ( x d W  ydW" t 
WoC - - - ~  I ~ ~ +  ~-~'] dYd~ (10) 

y 

1 

where 

R x =- f [3XdW (12) 
P u  

Ry - ( (3YdW (t3) 
~PU 

To evaluate Rx,  plots are made of energy density 
W as a function of  the product fiX for various 
values of Y, where X, Y are always referred to the 
undeformed grid. R x is obtained by graphical 
integration of fix with respect to W over those 
ranges of X, Y for which unloading occurs if the 
crack propagates (see Fig. 10). Figs. 11 and 12 
respectively show W versus ~X and Rx versus Y for 
the case of SBR at ao = 1.56. 

In a similar manner Ry is obtained from plots 
of W versus fly (Fig. 13) and takes the form shown 
in Fig. 14 when plotted against X. 

Graphical integration finally gives the terms in 
the brackets of Equation 11 which, for the case 
chosen (SBR at ao = 1.56), assume the following 
values 

fv R x d Y  = --1.75 x 10 -~ (Jm -1) 
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Figure 11 Plots of input energy 
density versus #X for SBR at a o = 
1.56 and at 23 ~ C. 

Figure 12 Plot  o f  R x versus Y for SBR 
at  % = 1.56 and at  23 ~ C. 
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Ix RrdX = 3.80 x 10 -1 ( Jm -1) 

The former term is negative and small compared 
with the latter and neglecting it affects the value 
of E obtained from Equation 11 by only + 5%. 
This effect is almost exactly offset by the probable 
6% underestimate of W(al, a2) arising from use of 
the simpler statistical theory stored energy 
function for W, as mentioned earlier. In the results 
presented here, therefore, the term in R x has been 
neglected throughout, and this greatly simplifies 
the task of evaluating E. 

4. Calculation of go 
~'o is half the minimum energy required to break 
unit area of interatomic bonds across the fracture 
plane i.e. the surface energy of the solid on one 
definition. Lake and Thomas [5] have shown that 
for polymer networks this minimum energy can be 
calculated on the assumption that all the energy 
stored in the molecule between neighbouring 
cross-links is 'lost' to the elastic stress field if the 
molecule breaks between these cross-links. Their 
formula gives 

~o = �89 3,IU~ (14) 

where 3' is a factor determined by the freedom of 
rotation about C-C bonds, l is the length of a 
monomer unit, U is the energy to rupture a 
C-C  bond and ~ = Ng 3/2 , where N is the number 
of chains per unit volume and ~ the number of 
monomer units in the network chain. (Note that 
~'o is half the quantity denoted To by Lake and 

Thomas, the latter referring to both surfaces of 
the crack). 

There is quite a wide margin of error in ~'o 
calculated from Equation 14, and Lake and 
Thomas themselves give an alternative formula 
which gives values a factor of 2 greater. For- 
tunately it is possible to measure ~'0 values experi- 
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Figure 14 Plot of Ry versus X for SBR at ao = 1.56 and 
at 23 ~ C. 
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TABLE I Experimental values for the parameter 7 o for 
various cross-linked elastomers 

Materials ~o (J m-2) Reference 

(in air) (in vacuo) 

Natural rubber 10-20 33 
Isomerized NR 35 - 
Synthetic eis PI 35 - 
Butadiene-styrene 
copolymer 30 - 
Butadiene-acrylonitrile 
copolymer < 50 - 
Polychloroprene 35 - 
Butyl rubber 20 20 
Polybutadiene 20-50 - 

Lake & 
Lindley 
[31 

Ahagon & 
Gent [9] 
Andrews 

Styrene-butadiene 45 - & Kinloch 
copolymer [4] 

mentally for elastomers under certain circum- 
stances, some examples being shown in Table I. 
The methods employed to measure ~'o are dis- 
cussed fully in the references to Table I, but  in- 
clude fatigue testing to vanishingly small crack 
growth rates and very slow tearing. Testing in 
vacuum instead of  air increases ~'o (for un- 
saturated polymers)  by factors of  up to 3 and 
some of  the higher figures in Table I were ob- 
tained by the inclusion of  antioxidants in the 
rubber. 

The observed reduction of  ~'o by oxygen in 
very low rate tests used to gather the data of  
Table I) is significant when we come to con- 
sider the value of  ~'o appropriate to the present 
experiments where the time scale of  crack 
propagation is much shorter. The appropriate 
values of  ~o for inclusion in Equation 1 may well 
be higher than those quoted because the bond 
disruption energy U is not  significantly reduced 
by  oxygen at tack on the short  time-scale involved 
in normal tearing. It is difficult to estimate the 
magnitude o f  this effect but  clearly the ~'o value 
at the tearing rates used in the present work 
should be intermediate between the values in 
Table I and the corresponding in vacuo values, i.e. 
in the range 40 to 8 0 J m  -2 for normal vul- 
canizates of  NR and SBR protec ted  by anti- 
oxidants.  

Returning to  the calculation of  ~o we find that  
Lake and Thomas obtained values which were 
characteristically a factor o f  2 to 3 smaller than 
the in vacuo experimental  values for the 

appropriate vulcanizates. They at t r ibuted this dis- 

crepancy to inadequacies in the theory.  
We have carried out  calculations of  ~o for the 

materials employed in the present work, using the 
parameters set out  in Table II (for detailed justi- 

fication of  these values, see [8]).  The resulting 
theoretical values for ~'o are displayed in Table 
I l l  which also includes previous slow-rate experi- 
mental data where available, and the experimental  

~'o values derived by the present s tudy by an 
entirely different method  i.e. by  the use of  
Andrews'  Equation 1 and 2 as discussed later. 

In deriving theoretical  ~o values for the 
uncross-linked systems polyethylene and 
plasticized PVC effective values for the M o o n e y -  

Rivlin constants C1 and 6"2 were derived from 
Mooney-Riv l in  plots and averaged over their rate- 
dependence. These values are thus not  determined 
with any great accuracy as indicated by the 
following values and error bands. 

C1 (MN m -2) C2 (MN m -2 ) 

plasticized PVC 0.55 -+ 0.35 4.1 + 1.9 
polyethylene 0.15 + 0.05 3 .8  + 0.2 

5. Synthesis of results 
In the results reported above, all the components  
of  Equations 1 and 2 have been separately 

TABLE II 

Parameters SBR EPDM PE PVC 

l X 101~ (m) 5.15 3.32 2.50 2.50 
rn • 102s (N) 12.6 6.79 4.57 10.2 
"r 1.54 1.83 1.83 2.77 
U X 1019 (J) 12.8 8.78 6.60 6.60 
0 (K) 296 296 296 296 

1.15 1.15 - - 
p X 10 -4 (Nm -3) 0.901 0.871 0.922 0.987 
M X 1023 (N) 32.7 16.3 - 7.35 
u' X 1 0  -2s  ( m  - 3 )  1.93 1.93 - 

C I X10(MNm -2) 2.0 2.0 1.5• 5.5• 

TABLE III Values of ~o (Jm-2) 

Material Theoretical Experimental Experimental 
(this work) (other work) 

(in vacuo)* 
NR 10 - 14 - 20 [3]* 

30 [3] * 
30 [31 SBR 16 65 -+ 15 45 [4] 

EPDM 18 65 +- 15 - 
p-PVC 15 +- 5 100 • 50 - 
PE 31 -+ 6 200 + 100 
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Figure 15 Plots showing agreement of experimental 
data points with Equation 17; (a) for SBR and EPDM 
(b) for PE and PVC. 
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evaluated and it remains to compare the directly 
measured values of  ~" with those derived using the 
equation. Because, however, the values of 70 are 
somewhat uncertain within a factor of about 2, it 
serves our purposes better to treat go as the un- 
known in Equation 1, thus deducing a value for 
comparison with the data given in Section 4 of this 
paper. 

To do this we rearrange Equations 1 and 2 thus, 
using N as a 'shorthand' for the summation in 
Equation 2; 

7 _ kl  

70 k~ - �89 
(15) 

k , ( 1 -  7o1~') = �89 (16) 

Since ~o /~ '~1  for most conditions, we take 
natural logarithms to get 

lnkl  ---" 7 o / 7 =  ln�89 (17) 

so that a graph of ln�89 against ~-1 should give a 
straight line of negative slope -- go with an inter- 
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cept of lnkl  as 7 -I -~ 0. For each material 7was 
measured directly at three different crack 
velocities and the corresponding kl and 
summation terms were evaluated as discussed 
above. Thus for each material we can plot In kl at 
7 -1 = 0 and three separate points of 7 -1 against 
In ~ ~. These plots are shown in Fig. 15, where the 
error bars on the points reflect the uncertainties in 
evaluating Y.. 

It is clear that the theoretical relationship of 
Equation 17 represents the data well, especially 
for the cross4inked materials SBR and EPDM. The 
small negative slope of the best straight line 
through the points can be estimated reasonably 
accurately for SBR and EPDM, though only with 
considerable error in the case of PE and p-PVC. 
These slopes should, of course, equal 70 and their 
values are compared with theoretical and previous 
experimental data in Table III. 

The agreement is very satisfactory, especially 
bearing in mind the comments made earlier about 
the rather higher go values to be expected from 
non-oxidative conditions. Certainly the lineadty 
and negative slopes in Fig. 15, together with the 
good order.of-magnitude results for .'J'o, seem to 



T A B L E  IV Details of materials used 

Abbreviation Name Content Molecular weight 
(by weight) 

SBR Styrene Butadiene S 70 2.0 • 10 s 

Rubber B 30 

EPDM Ethylene Propylene E _ 67 1.0 • 10 s 
Diene Rubber P 33 

p-PVC Plasticized PVC/plasticizer 4.5 • 104 
Polyvinyl Chloride 67 

z - -  

33 
Plasticizer 
(di-octyl phthalate) 
(di-alphanyl phthalate) 

PE low density d = 0.922 
Polyethylene 

provide excellent confirmation of Equations 1 and 
2, and thus of the generalized theory proposed 
by Andrews. 

T A B L E  V The compounding recipes and cures of 
vulcanizates 

Composition SBR EPDM 
(parts by wt) 

Rubber 100 100 
Sulphur 4 0.1 
Diphenyl guanadine 3 - 
Dicumyl peroxide - 1 
Zinc oxide 5 - 
Stearic acid 2 - 
Phenyl-2-naphthylamine 1 - 

Cure temperature (K) 418 423 
Cure time (see) 3.3 X 103 2.4 X 103 
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